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Abstract

The Cognitive Radio-based Internet of Things (CR-10T) addresses spectrum scarcity by enabling 10T devices to
opportunistically access underutilized licensed frequency bands. Throughput optimization plays a crucial role in
improving communication efficiency while maintaining Quality of Service (QoS) and avoiding interference with
primary users (PUs). This article presents a review of recent algorithms and approaches for throughput optimization
in CR-10T, focusing on deep reinforcement learning (DRL), metaheuristics, cooperative spectrum sensing, and game-
theoretic models. Comparative analysis highlights the advantages, limitations, and performance metrics of these
techniques, providing guidance for researchers and practitioners in developing more efficient CR-10T systems.

Index Terms: CR, loT, Throughput Optimization, Spectrum Sensing, Deep Reinforcement Learning, Metaheuristics
1. INTRODUCTION

The Internet of things is an emerging communication technology, connecting massive devices across diverse
applications. However, the limited availability of unlicensed spectrum bands has raised concerns about spectrum
scarcity [2]. The cognitive radio is a smart technology which offered keen solution to the spectrum scarcity issues by
enabling dynamic spectrum access (DSA) [3]. Cognitive Radio (CR) technology was developed to solve spectrum
scarcity in wireless networks. When combined with 10T, known as CR-IoT, it allows devices to find and use unused
spectrum bands (called spectrum holes) without interfering with primary users (PUs), who are the licensed owners of
those bands. This helps make better use of limited spectrum, especially in crowded and high-interference
environments [1]. Throughput optimization in CR-10T aims to achieve higher data rates, lower latency, and efficient
energy use. Recent research explores diverse methods, including deep reinforcement learning (DRL) for adaptive
channel selection, as well as metaheuristics and game-theoretic approaches.
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This survey aims to present a comprehensive review of Deep Reinforcement Learning (DRL) based approach,
metaheuristics optimization techniques, cooperative spectrum sensing and optimization strategies, and game-
theoretic models for throughput enhancement in Cognitive Radio-based Internet of Things (CR-10T) networks.

The remainder of this paper is organized as follows. Section 2 presents background concepts related to CR-l1oT
systems, including spectrum scarcity, DSA mechanisms, and throughput optimization metrics. Section 3 reviews
DRL-based approaches, detailing recent advancements, algorithms, and performance results. Section 4 discusses
metaheuristic optimization techniques for CR-10T spectrum allocation. Section 5 examines cooperative spectrum
sensing and optimization strategies. Section 6 reviews game-theoretic models for efficient spectrum sharing. Section
7 Other algorithm for Throughput optimization. Finally, Section 8 concludes the paper.

2. BACKGROUND
2.1. Spectrum Scarcity in 10T Networks

The explosive growth of IoT devices has significantly increased demand for wireless communication resources.
Traditional static spectrum allocation policies assign fixed frequency bands to licensed services, which often lead to
under-utilization when licensed users are inactive, and severe congestion in unlicensed bands. This imbalance
exacerbates spectrum scarcity, limiting the scalability and performance of emerging loT applications [4]. Addressing
this challenge requires Dynamic Spectrum Access (DSA) mechanisms that can adapt to varying network conditions
while protecting the rights of Primary Users (PUs).

2.2. Cognitive Radio-based 10T (CR-10T) Architecture

Cognitive Radio (CR) technology enables unlicensed or Secondary Users (SUs) to opportunistically access unused
licensed spectrum—Kknown as spectrum holes—without causing harmful interference to PUs. When CR capabilities
are embedded into 10T devices, the resulting CR-1oT architecture typically includes the following components:

Spectrum Sensing Module — Detects the presence or absence of PUs to identify available channels.

e Spectrum Decision Module — Selects the most suitable channel based on sensing data and QoS requirements
[7].

e Spectrum Sharing Module — Coordinates channel access among multiple SUs to avoid collisions [5].
Spectrum Mobility Module — Enables seamless switching to alternative channels when a PU reclaims its
spectrum [5, 7].

e This architecture allows CR-loT networks to operate efficiently in heterogeneous, interference-prone
environments while maintaining compliance with spectrum access regulations.

The CR-loT architecture integrates 10T devices with cognitive radio intelligence for efficient spectrum utilization.
The diagram below illustrates the layered structure of the CR-10T architecture, including 10T devices, primary users,
the CR engine, gateway, and application layer (Figure 1).
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Figure 1 CRIOT Architecture
Note:

e 10T Devices (Secondary Users):
o  Opportunistically access spectrum.
e Primary Users (Licensed Users)
o Hold spectrum priority.
e Cognitive Radio Engine:
o Handles sensing, decision, sharing, and mobility.
o (Gateway/Base Station:
o Aggregates traffic and coordinates access.
Control Layer:

o Optimization and learning (e.g., DRL).
Application Layer:
o Supports 10T services such as healthcare, industry, and smart cities.

2.3. Throughput Optimization in CR-10T

Throughput optimization in CR-10T refers to maximizing the successful data delivery rate per unit time while
considering additional objectives such as minimizing latency, improving energy efficiency, and ensuring PU
protection [8]. The optimization process involves several factors:

e Channel Availability Prediction: Forecasting spectrum hole occurrences using statistical or machine learning
methods.

e Adaptive Channel Selection: Dynamically assigning channels to SUs based on real-time conditions and
predicted availability.

e Transmission Power Control: Adjusting transmission power to balance interference avoidance and
communication reliability.

e Multi-user Coordination: Ensuring fair and efficient spectrum sharing in dense loT deployments.

These objectives formulate a complex multi-objective optimization problem that demands intelligent decision-
making. Consequently, recent studies have increasingly investigated Deep Reinforcement Learning, metaheuristic
algorithms, and game-theoretic models to devise effective solutions (Figure 2).
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Figure 2 Throughput Optimization in CRIOT

3. DEEP REINFORCEMENT LEARNING-BASED APPROACHES

Deep Reinforcement Learning (DRL) has emerged as a promising paradigm for throughput optimization in CR-IoT,
enabling devices to autonomously learn and adapt spectrum access strategies in dynamic and uncertain environments.
By combining reinforcement learning with deep neural networks, DRL agents can approximate complex value
functions, capture temporal dependencies, and make near-optimal channel access decisions without explicit modeling
of the wireless environment (Figure 3).
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Figure 3 flowchart of the Deep Reinforcement Learning (DRL) working process in CRIoT
3.1. Motivation for DRL in CR-10T

In CR-10T networks, channel availability is highly dynamic due to the unpredictable activity of Primary Users (PUs)
and interference from other Secondary Users (SUs). Traditional optimization methods often require precise system
models or suffer from slow adaptation to environmental changes. DRL overcomes these limitations by:

e Learning from Interaction: Continuously improving policies through environment feedback.
e Scalability: Handling large state-action spaces inherent in multi-channel, multi-user systems.

o Generalization: Adapting to varying network topologies and spectrum usage patterns without retraining from
scratch.

3.2. Recent DRL-based Solutions

A Priority Experience Replay Deep Echo State Q-Network (PER-DESQN) was proposed for multi-user, multi-
channel CR-loT networks [9]. The model integrates Echo State Networks (ESN) to capture temporal correlations in
spectrum usage, Double DQN (DDQN) to reduce Q-value overestimation, and a priority-based replay buffer for
efficient training. Simulation results demonstrated faster convergence and improved channel capacity compared to
conventional DRL methods [10].

To address privacy and personalization in distributed 10T systems, a hierarchical federated DRL framework was
introduced [12]. Local devices train personalized models while sharing only essential parameters with a global model
at the edge/cloud. This approach accelerated convergence by ~40% and maintained high throughput performance
with reduced communication overhead [12].

DQN in TV White Space CR Networks (2025) — A DRL-based predictive spectrum access system was developed for
TV White Space (TVWS) CR networks using DQN and Quantile Regression DQN (QR-DQN). The solution
achieved up to 96.34% interference avoidance and average latency as low as 1 ms, making it suitable for latency-
sensitive CR-10T applications [13].

DRL for Healthcare 1oT Resource Allocation (2024) — Targeting dense healthcare 10T deployments, researchers
modeled interference using a hypergraph interference framework and formulated resource allocation as a Markov
Decision Process (MDP). A hybrid DRL agent employing asynchronous parallelism improved throughput under
heavy interference conditions [14]

A DRL-based task offloading system (Novel DRL-TO) designed to overcome delays, high latency, and security
issues in loT. The DRL achieved 70% resource utilization, 93.5% task completion, and 350 kbps throughput [15].

An Enhanced LSTM (ELSTM) model, combined with the Red Panda Optimization (RPO) algorithm, was proposed
to improve energy efficiency in Cognitive Radio Networks. The ELSTM predicts and manages key CRN parameters
such as transmission time, transmission power, and sensing time, while the RPO algorithm fine-tunes these
parameters to achieve optimal results. The results showed that the ELSTM-RPO model achieved higher energy
efficiency, improved spectrum utilization, and better protection for primary users compared with existing methods
[28].

An improved NB-loT system called NB-CR-loT was proposed, using Deep Q-Learning to manage the limited
spectrum more efficiently. By replacing traditional Q-tables with a deep neural network, the algorithm learns to
reduce repeated transmissions and serve more devices. Results show that it outperforms standard Q-learning in
resource allocation [29].

The authors proposed a resource management system for Social and Cognitive 10T networks using Deep
Reinforcement Learning (DRL). The goal was to improve energy efficiency and maintain good quality of service for
loT devices. They focused on optimizing how radio resources and transmission power are allocated, based on the
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social relationships between devices. A multi-agent DRL approach with Prioritized Experience Replay (PER) was
used, allowing devices to learn and cooperate with each other. Simulation results showed that this method performed
better than traditional techniques, using less energy while still meeting service requirements like low delay and high
reliability [30].

The authors offer a Double Deep Q-Network (DDQN) supplemented with dual-agent architecture for adaptive traffic
signal regulation. Two agents, each in charge of particular traffic flows, cooperate to stabilize the system and
preserve a set phase sequence at a four-phase intersection. Grids depicting car positions are used to illustrate traffic
conditions, and the distinction between waiting and passing vehicles determines rewards. When compared to single-
agent DQN or binary-action techniques, simulations utilizing SUMO demonstrate that this DDQN dual-agent
approach dramatically increases traffic capacity and decreases congestion [31].

The paper proposes a reinforcement learning-based routing method for cognitive radio-enabled 10T communications,
where routing decisions are dynamically learned based on current network conditions. Specifically, it employs Q-
learning, a popular model-free reinforcement learning technique, to select optimal network paths and communication
channels by maximizing long-term performance. The algorithm considers factors like channel availability, spectrum
quality, and interference to make intelligent routing choices. Simulation results from similar studies show that such
RL-based methods significantly improve average data rate and throughput, while reducing packet collisions and end-
to-end delay, outperforming traditional routing protocols such as AODV-IoT, ELD-CRN, and SpEED-Io [33].

3.3. Observations and Insights

The reviewed DRL approaches consistently demonstrate superior adaptability and throughput performance com
[28]pared to traditional heuristic or fixed-rule-based methods. However, key challenges remain:

Sample Efficiency: DRL agents require extensive training episodes to achieve optimal performance.

Exploration—Exploitation Trade-off: Balancing between discovering new spectrum opportunities and exploiting
known optimal channels.

Computational Overhead: High complexity may limit deployment on resource-constrained 10T devices, necessitating
model compression or lightweight DRL variants.

Given these strengths and limitations, hybrid models that combine DRL with metaheuristics or cooperative sensing
are emerging as a promising research direction for practical CR-10T deployments.

4. Metaheuristic Optimization Approaches

Metaheuristic optimization algorithms have been widely applied to throughput optimization in CR-l0T due to their
ability to efficiently search large and complex solution spaces without requiring complete mathematical models of
the system. These algorithms are inspired by natural processes such as evolution, swarm intelligence, and predator—
prey dynamics and they can be adapted to solve multi-objective problems involving spectrum allocation, power
control, and interference management.

4.1. Motivation for Metaheuristics in CR-10T

CR-loT environments present highly non-linear, NP-hard optimization problems due to fluctuating spectrum
availability, varying channel conditions, and multi-user interference. Metaheuristic algorithms are attractive in this
context because they:

e Do not require accurate channel or traffic models to operate effectively.
e Manage several competing goals, such as increasing throughput while lowering energy and interference..
e Offer global search capability, reducing the risk of convergence to local optima.
4.2. Recent Metaheuristic-based Solutions
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The proposed method hybridizes Fractional Grey Wolf Optimization (FGWO) with Cuckoo Search (CS) to exploit
the strengths of both algorithms—precise local search from FGWO and diverse global exploration from CS. This
hybrid metaheuristic optimization framework is applied to optimize spectrum sensing thresholds in Cognitive Radio
Networks (CRNs). Simulation results show that the approach improves accuracy and efficiency compared to
conventional methods [19].

The proposed method integrates Fractional Grey Wolf Optimization (FGWQO) with Cuckoo Search (CS) to optimize
spectrum sensing thresholds in Cognitive Radio Networks (CRNs). By combining FGWO’s precise local search
capability with CS’s diverse global exploration, the approach achieves better balance between exploration and
exploitation. The outcomes demonstrate higher detection accuracy, lower false alarm rates, and faster convergence
compared to traditional methods such as GWO, PSO, and CS, thereby improving the overall efficiency and
robustness of spectrum sensing under varying SNR conditions [16].

The proposed method introduces a Hybrid PSO-based power allocation algorithm for Cognitive Radio Networks. By
combining the exploration ability of Particle Swarm Optimization (PSO) with additional enhancement strategies, the
algorithm ensures efficient distribution of power among users. The outcomes show that it achieves higher
throughput, better fairness, and improved robustness compared to conventional PSO and other existing approaches
[17].

The proposed method presents a hybrid routing approach for 10T networks that combines duty cycling with an
improved Ant Colony Optimization (ACO) algorithm. Duty cycling reduces energy consumption by controlling node
activity, while improved ACO ensures efficient multi-hop routing. The outcomes show that the approach achieves
longer network lifetime, lower energy consumption, and better end-to-end throughput compared to traditional routing
methods [18].

The proposed method introduces a Chaotic Whale Optimization Algorithm (CWOA) for multi-objective conjoint
spectrum utilization in Cognitive Radio Networks. By integrating chaotic maps with WOA, the algorithm enhances
exploration and avoids premature convergence. The outcomes show that CWOA achieves better spectrum utilization,
higher throughput, and lower interference compared to conventional WOA and other optimization methods [20].

The proposed method presents a hybrid Whale-Ant Optimization Algorithm (WAOA) for energy-efficient routing in
Wireless Sensor Networks (WSNs). The hybridization leverages WOA’s exploration strength and Ant Colony
Optimization’s (ACO) path-finding efficiency. The outcomes demonstrate longer network lifetime, reduced energy
consumption, and improved packet delivery ratio compared to standalone WOA, ACO, and other conventional
routing approaches [21].

4.3. Observations and Insights

Metaheuristic algorithms have shown competitive performance in CR-10T throughput optimization, especially in
scenarios where the search space is large and system modeling is impractical. However, they typically operate offline
or require batch re-optimization when network conditions change, limiting their applicability in highly dynamic
environments. Integrating metaheuristics with online learning methods such as DRL could address this limitation by
combining global search capability with adaptive decision-making.

5. Cooperative Spectrum Sensing and Optimization

Cooperative Spectrum Sensing (CSS) has emerged as a crucial strategy in CR-10T networks to improve the reliability
of spectrum hole detection and enhance throughput performance. By enabling multiple 10T devices—acting as
Secondary Users (SUs)—to collaboratively sense spectrum availability, CSS mitigates the limitations of individual
sensing (such as shadowing, multipath fading, and noise uncertainty) and increases detection accuracy for Primary
Users (PUs).

5.1. Motivation for Cooperative Spectrum Sensing in CR-10T
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Single-user spectrum sensing often suffers from low detection probability in challenging wireless environments. CSS
addresses this by:

e Aggregates sensing data from multiple geographically distributed nodes to improve detection accuracy.
o Reduces false alarm probability, thereby increasing overall spectrum utilization.
o Enhances network robustness under low-SNR conditions, ensuring reliable performance.

These advantages make CSS particularly suitable for dense I0T deployments where spectrum conditions vary
significantly across devices.

5.2. Recent Cooperative Sensing and Optimization Solutions

The proposed a cooperative spectrum sensing (CSS) optimization system for 6G cognitive radio networks using the
Manta Ray Foraging Algorithm (MRFO). The algorithm was applied to find the best weights for combining sensing
results from multiple secondary users, giving more importance to those with stronger signal quality. By optimizing
sensing thresholds and decision rules, the system reduced false alarms and missed detections, ensuring efficient
spectrum utilization. The results showed that the method achieved higher detection probability, lower false alarm
rate, better energy efficiency, and improved throughput and reliability, particularly in low-SNR and dense 6G
network conditions [22].

An energy-efficient cooperative spectrum sensing scheme was proposed for Cognitive 10T that uses spatial
correlation among nearby nodes to avoid redundant sensing and save energy. By grouping correlated nodes, the
system reduces unnecessary reporting and improves sensing efficiency. The results showed that the scheme lowers
energy consumption, increases detection accuracy, and enhances spectrum utilization compared to traditional
cooperative sensing methods [23].

An energy-efficient cooperative spectrum sensing system was proposed for Cognitive Radio networks using a neural
network. The network is designed to optimize sensing decisions by learning key parameters like each sensor’s
sleeping rate and detection thresholds, guided by a custom loss function that balances energy usage with required
detection and false alarm rates. This approach reduces the number of nodes needed for sensing (thus saving energy),
improves detection accuracy, and achieves better spectrum utilization compared to traditional methods [24].

An optimal linear weighted cooperative spectrum sensing system was proposed for cluster-based cognitive radio
networks. In this method, nodes are grouped into clusters and the cluster heads—those with better channel
conditions—aggregate sensing data. An optimal linear weighting scheme assigns weights to each secondary user
based on their SNR and historical sensing accuracy, so that more reliable nodes have a greater influence in the final
decision. This leads to higher detection probability, lower error rate, and improved spectrum utilization compared to
traditional methods that treat all nodes equally [25].

An energy-efficient cooperative spectrum sensing system is proposed for cognitive radio networks, using a hybrid
spectrum handoff strategy. The system combines energy detection for spectrum sensing with a threshold-based
approach driven by primary user traffic patterns to manage spectrum mobility. It employs a hybrid handoff
mechanism based on dynamic spectrum aggregation, which balances probabilistic stay-and-wait and QoS handoff
thresholds. This design enables cooperative sensing to identify optimal channels, maximizing throughput while
minimizing energy consumption, all without increasing handoff delay or detection errors [26].

A quantum-secured loT communication system with Al advancements was proposed for 6G cognitive radio
networks. It uses dual-layer authentication, combining Public Key Infrastructure (PKI) and Quantum Key
Distribution (QKD), to secure spectrum access and data transfer. The system forecasts channel state information
(CSI) using a Multi-Layer Perceptron with Kalman Filter (MLP-KF) and employs an intelligent spectrum sensing
model based on Reinforcement Learning-based Ensemble Regression (RL-ER). According to simulation studies, this
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architecture dramatically lowers error rates, boosts prediction accuracy, speeds up encryption and decryption, and
improves latency and signal coverage [27].

The paper introduces a new method to save energy while finding free channels in cognitive radio-based IoT systems.
It uses a technique called Dempster—Shafer theory to combine results from many sensors to decide if a channel is free
or busy. The method works with both simple (hard) and detailed (soft) sensing data. This helps reduce energy use and
makes sensing more accurate. Tests show that the method improves sensing accuracy by about 13%, increases data
transfer, uses less energy, reduces errors, and helps devices last longer. Overall, it offers a smart and efficient way to
use radio channels in 10T networks [32].

A novel approach to cooperative spectrum sensing in cognitive 10T networks is presented in this research. Using a
technique known as distributed sequential detection, two Internet of Things devices collaborate and make judgments
independently of a central controller. Based on accuracy and cost, each device determines when to stop sensing and
determines whether the channel is busy or free. To determine the ideal moment to pause and make a choice, the
authors employ a clever strategy known as person-by-person optimization with dynamic programming. The findings
demonstrate that this approach is effective and dependable for 10T networks since it lowers the total sensing cost and
maintains low error rates (false alarms and missed detections). [34].

A lightweight Double Deep Q-Network (Double-DQN) was proposed to improve energy efficiency in Industrial 10T
(oT) devices used in thermal power plants. This method uses reinforcement learning to help devices make smarter
decisions about resource usage while keeping the model lightweight enough for real-time applications. The Double-
DQN approach helps avoid common problems like overestimating action values, making the learning process more
stable and reliable. Simulation results show that the proposed method significantly reduces energy consumption,
improves system efficiency, and performs better than traditional Q-learning and standard DQN algorithms. It is
especially effective in complex and energy-constrained industrial environments [35].

The authors proposed an improved Grey Wolf Optimization algorithm called EECHIGWO for selecting cluster heads
in Wireless Sensor Networks (WSNSs). The main goal was to save energy, increase throughput, and make the network
more stable and last longer. The algorithm selects the best cluster heads by considering factors like the distance to the
sink, the remaining energy of nodes, balance among cluster heads, and the average distance within a cluster. The
method was tested using measures such as the number of dead nodes, energy used, operating rounds, and average
throughput. Results showed that EECHIGWO reduced energy use, avoided early convergence, and extended the
network lifetime. It also gave much better stability compared to other protocols such as SSMOECHS, FGWSTERP,
LEACH-PRO, HMGWO, and FIGWO [36].

5.3. Observations and Insights

Cooperative spectrum sensing greatly enhances the reliability of CR-10T networks, especially in low-SNR and high-
interference conditions. However, CSS introduces additional coordination overhead and reporting delays that may
reduce real-time responsiveness. Future research is trending toward joint optimization of sensing, channel selection,
and power control—often combining CSS with DRL or metaheuristic algorithms—to achieve both high detection
accuracy and throughput performance.

6. Game-Theoretic Models

Game-theoretic modeling provides a principled way to analyze strategic interactions among Secondary Users (SUs)
and between SUs and Primary Users (PUs) in CR-loT. By formalizing spectrum access as games with well-defined
utilities and constraints, these methods seek equilibrium that balance throughput, interference, fairness, and energy
use.

6.1. Motivation for Game Theory in CR-1oT

Decentralized decision-making: Many loT deployments lack a central controller; game models naturally capture
local, selfish, or partially cooperative behaviors.
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e Fairness and stability: Equilibrium notions (e.g., Nash, Stackelberg) provide stable operating points that
discourage unilateral deviation.

o Heterogeneous objectives: Users may value throughput, delay, and energy differently; utility design
internalizes these trades-offs.

6.2. Recent Game theory based solutions

A game theory-based clustering method was proposed for Cognitive Radio Wireless Sensor Networks (CR-WSNS).
In this approach, each node decides whether to become a cluster head or join another cluster based on its remaining
energy, distance to the base station, and communication cost. The clustering process is modeled as a game, where
nodes reach a stable state and do not need to change roles again. Simulation results showed that this method saves
more energy, keeps more nodes alive for longer, and extends the overall network lifetime compared to traditional
clustering methods. It also performs well in dynamic spectrum environments, which are common in CR-WSNs [37].

An improved channel allocation game algorithm (CGVAC) was proposed to reduce interference and improve
spectrum use in wireless sensor networks. The algorithm is designed to work even when the number of available
channels changes. It takes into account link quality, interference, and remaining energy while assigning channels, and
it uses game theory to reach a stable solution. Simulation results showed that CGVAC reduces communication
interference, increases spectrum utilization, and lowers spectrum cost compared to traditional methods [38].

A game theory-based model was proposed for 1oT-enabled Cognitive Radio Networks (CRNs) working in underlay
mode. In this approach, the secondary user network was represented using a triangular lattice with relays. The model
included both interference and power constraints while calculating the Nash equilibrium, and it also considered
factors such as channel strength and desirability to make the framework more realistic. Simulation results showed
that this method improves spectrum utilization, provides reliable communication for secondary users, and offers a
practical framework for applying game theory in CRNs.[39].

To reduce the high computational cost of resource allocation in Cognitive Radio Networks (CRNs), the authors
proposed a Power-Based Pricing Algorithm (PPA). The method is designed for downlink CRNs and ensures that
interference to primary users stays within safe limits. It works in two stages: first, subcarriers are assigned to users,
and then a pricing-based utility function is used to optimize power allocation. The algorithm was tested in an OFDM-
based CRN, and results showed that it achieves performance close to the optimal solution while greatly reducing
complexity to (Mlog(M)). This makes PPA a more practical and efficient choice for resource allocation in CRNs
[40].

7. Other algorithm for Throughput optimization

A Distributed Fuzzy—Deep Reinforcement Learning (DFDRL) protocol was proposed for wireless sensor networks.
Fuzzy logic is used to select cluster heads based on energy, distance, and node degree, while a Double Deep Q-
Network (DDQN) is applied for routing to choose the best next-hop relay. A cluster maintenance mechanism further
reduces overhead. The results show that DFDRL improves network lifetime, lowers energy consumption, and
increases throughput compared to existing protocols. In the future, this system can be enhanced by integrating a
spectrum awareness algorithm, which would further improve throughput and adaptability in Cognitive Radio 10T
(CR-10T) networks [41].

The QoS-Aware Deep Reinforcement Learning-based Link Adaptation (QDRLLA) proposed for Beyond 5G
networks can also be applied to Cognitive Radio IoT (CR-loT). In CR-loT, devices must adapt transmission
parameters while considering spectrum availability and primary user protection. By adding spectrum sensing and
interference constraints to the reward function, the DQN-based link adaptation can optimize modulation, coding,
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power, and channel selection. This would improve throughput, spectral efficiency, and QoS in CR-loT applications

[42].

An Al-based spectrum sensing method was proposed for LoRa and cognitive radio networks. The approach leverages
artificial intelligence techniques to enhance spectrum detection and minimize interference. Results demonstrate
higher detection accuracy, improved throughput, and greater adaptability compared to traditional methods, making it
effective for 10T and CRN applications [43].
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A Pareto-optimal resource allocation scheme was proposed for Cognitive Radio-based 10T networks to balance
energy efficiency (EE) and spectrum efficiency (SE). The authors introduced a Hybrid Tabu Search—based Simulated
Algorithm (HTSA), which combines Tabu Search (TS) and Simulated Annealing (SA) with fuzzy decision-making
to select the best trade-off solutions. Simulation results showed that HTSA outperforms traditional TS and SA,
providing higher energy and spectrum efficiency, fairer resource utilization, and better adaptability under different
network conditions [44].

8. Conclusion and Future Directions

This survey reviewed 44 recent works on Cognitive Radio (CR) and Cognitive Radio-based 10T (CR-10T) networks,
focusing on spectrum sensing, resource allocation, energy efficiency, and throughput optimization. While traditional
methods offer stable results, they face challenges with scalability and adaptability. Recent advances such as deep
reinforcement learning, metaheuristics, and hybrid cooperative approaches show better performance, but issues like
high computational cost, lack of real-world testing, and no common datasets remain.

Future research should focus on designing lightweight Al models that can run on low-power 10T devices, developing
benchmark datasets for fair comparison, and testing solutions in real-world environments. The use of 6G features like
ultra-reliable low-latency communication and terahertz bands will further improve CR-10T. In addition, more work is
needed on security and privacy through blockchain, federated learning, and quantum-safe methods, as well as on
energy-efficient protocols for sustainable networks. Collaborative and intelligent spectrum sharing using multi-agent
learning will also play a key role in building scalable, secure, and practical CR-l0T systems.
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