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Abstract 

The Cognitive Radio-based Internet of Things (CR-IoT) addresses spectrum scarcity by enabling IoT devices to 

opportunistically access underutilized licensed frequency bands. Throughput optimization plays a crucial role in 

improving communication efficiency while maintaining Quality of Service (QoS) and avoiding interference with 
primary users (PUs). This article presents a review of recent algorithms and approaches for throughput optimization 

in CR-IoT, focusing on deep reinforcement learning (DRL), metaheuristics, cooperative spectrum sensing, and game-

theoretic models. Comparative analysis highlights the advantages, limitations, and performance metrics of these 

techniques, providing guidance for researchers and practitioners in developing more efficient CR-IoT systems. 

Index Terms: CR, IoT, Throughput Optimization, Spectrum Sensing, Deep Reinforcement Learning, Metaheuristics 

1. INTRODUCTION 

The Internet of things is an emerging communication technology, connecting massive devices across diverse 
applications. However, the limited availability of unlicensed spectrum bands has raised concerns about spectrum 

scarcity [2]. The cognitive radio is a smart technology which offered keen solution to the spectrum scarcity issues by 

enabling dynamic spectrum access (DSA) [3]. Cognitive Radio (CR) technology was developed to solve spectrum 
scarcity in wireless networks. When combined with IoT, known as CR-IoT, it allows devices to find and use unused 

spectrum bands (called spectrum holes) without interfering with primary users (PUs), who are the licensed owners of 

those bands. This helps make better use of limited spectrum, especially in crowded and high-interference 

environments [1]. Throughput optimization in CR-IoT aims to achieve higher data rates, lower latency, and efficient 
energy use. Recent research explores diverse methods, including deep reinforcement learning (DRL) for adaptive 

channel selection, as well as metaheuristics and game-theoretic approaches. 
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This survey aims to present a comprehensive review of Deep Reinforcement Learning (DRL) based approach, 
metaheuristics optimization techniques, cooperative spectrum sensing and optimization strategies, and game-

theoretic models for throughput enhancement in Cognitive Radio-based Internet of Things (CR-IoT) networks. 

The remainder of this paper is organized as follows. Section 2 presents background concepts related to CR-IoT 

systems, including spectrum scarcity, DSA mechanisms, and throughput optimization metrics. Section 3 reviews 
DRL-based approaches, detailing recent advancements, algorithms, and performance results. Section 4 discusses 

metaheuristic optimization techniques for CR-IoT spectrum allocation. Section 5 examines cooperative spectrum 

sensing and optimization strategies. Section 6 reviews game-theoretic models for efficient spectrum sharing. Section 

7 Other algorithm for Throughput optimization. Finally, Section 8 concludes the paper. 

2. BACKGROUND 

2.1. Spectrum Scarcity in IoT Networks 

The explosive growth of IoT devices has significantly increased demand for wireless communication resources. 

Traditional static spectrum allocation policies assign fixed frequency bands to licensed services, which often lead to 

under-utilization when licensed users are inactive, and severe congestion in unlicensed bands. This imbalance 

exacerbates spectrum scarcity, limiting the scalability and performance of emerging IoT applications [4]. Addressing 
this challenge requires Dynamic Spectrum Access (DSA) mechanisms that can adapt to varying network conditions 

while protecting the rights of Primary Users (PUs). 

2.2. Cognitive Radio-based IoT (CR-IoT) Architecture 

Cognitive Radio (CR) technology enables unlicensed or Secondary Users (SUs) to opportunistically access unused 

licensed spectrum—known as spectrum holes—without causing harmful interference to PUs. When CR capabilities 

are embedded into IoT devices, the resulting CR-IoT architecture typically includes the following components: 

Spectrum Sensing Module – Detects the presence or absence of PUs to identify available channels. 

 Spectrum Decision Module – Selects the most suitable channel based on sensing data and QoS requirements 

[7]. 

 Spectrum Sharing Module – Coordinates channel access among multiple SUs to avoid collisions [5]. 

 Spectrum Mobility Module – Enables seamless switching to alternative channels when a PU reclaims its 

spectrum [5, 7]. 

 This architecture allows CR-IoT networks to operate efficiently in heterogeneous, interference-prone 

environments while maintaining compliance with spectrum access regulations. 

The CR-IoT architecture integrates IoT devices with cognitive radio intelligence for efficient spectrum utilization. 
The diagram below illustrates the layered structure of the CR-IoT architecture, including IoT devices, primary users, 

the CR engine, gateway, and application layer (Figure 1). 
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Figure 1 CRIoT Architecture 

Note: 

 IoT Devices (Secondary Users): 
o   Opportunistically access spectrum. 

 Primary Users (Licensed Users) 

o  Hold spectrum priority. 

 Cognitive Radio Engine: 

o  Handles sensing, decision, sharing, and mobility. 

 Gateway/Base Station:  
o Aggregates traffic and coordinates access. 

 Control Layer:  

  

o Optimization and learning (e.g., DRL). 

 Application Layer:  

o  Supports IoT services such as healthcare, industry, and smart cities. 

2.3. Throughput Optimization in CR-IoT 

Throughput optimization in CR-IoT refers to maximizing the successful data delivery rate per unit time while 

considering additional objectives such as minimizing latency, improving energy efficiency, and ensuring PU 

protection [8]. The optimization process involves several factors: 

 Channel Availability Prediction: Forecasting spectrum hole occurrences using statistical or machine learning 
methods. 

 Adaptive Channel Selection: Dynamically assigning channels to SUs based on real-time conditions and 

predicted availability. 

 Transmission Power Control: Adjusting transmission power to balance interference avoidance and 

communication reliability. 

 Multi-user Coordination: Ensuring fair and efficient spectrum sharing in dense IoT deployments. 

These objectives formulate a complex multi-objective optimization problem that demands intelligent decision-

making. Consequently, recent studies have increasingly investigated Deep Reinforcement Learning, metaheuristic 

algorithms, and game-theoretic models to devise effective solutions (Figure 2). 
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Figure 2 Throughput Optimization in CRIoT 

3. DEEP REINFORCEMENT LEARNING-BASED APPROACHES 

Deep Reinforcement Learning (DRL) has emerged as a promising paradigm for throughput optimization in CR-IoT, 

enabling devices to autonomously learn and adapt spectrum access strategies in dynamic and uncertain environments. 

By combining reinforcement learning with deep neural networks, DRL agents can approximate complex value 
functions, capture temporal dependencies, and make near-optimal channel access decisions without explicit modeling 

of the wireless environment (Figure 3). 
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Figure 3 flowchart of the Deep Reinforcement Learning (DRL) working process in CRIoT 

3.1. Motivation for DRL in CR-IoT 

In CR-IoT networks, channel availability is highly dynamic due to the unpredictable activity of Primary Users (PUs) 

and interference from other Secondary Users (SUs). Traditional optimization methods often require precise system 

models or suffer from slow adaptation to environmental changes. DRL overcomes these limitations by: 

 Learning from Interaction: Continuously improving policies through environment feedback. 

 Scalability: Handling large state-action spaces inherent in multi-channel, multi-user systems. 

 Generalization: Adapting to varying network topologies and spectrum usage patterns without retraining from 

scratch. 

3.2. Recent DRL-based Solutions 

A Priority Experience Replay Deep Echo State Q-Network (PER-DESQN) was proposed for multi-user, multi-

channel CR-IoT networks [9]. The model integrates Echo State Networks (ESN) to capture temporal correlations in 
spectrum usage, Double DQN (DDQN) to reduce Q-value overestimation, and a priority-based replay buffer for 

efficient training. Simulation results demonstrated faster convergence and improved channel capacity compared to 

conventional DRL methods [10]. 

To address privacy and personalization in distributed IoT systems, a hierarchical federated DRL framework was 

introduced [12]. Local devices train personalized models while sharing only essential parameters with a global model 

at the edge/cloud. This approach accelerated convergence by ~40% and maintained high throughput performance 

with reduced communication overhead [12]. 

DQN in TV White Space CR Networks (2025) – A DRL-based predictive spectrum access system was developed for 

TV White Space (TVWS) CR networks using DQN and Quantile Regression DQN (QR-DQN). The solution 

achieved up to 96.34% interference avoidance and average latency as low as 1 ms, making it suitable for latency-

sensitive CR-IoT applications [13]. 

DRL for Healthcare IoT Resource Allocation (2024) – Targeting dense healthcare IoT deployments, researchers 

modeled interference using a hypergraph interference framework and formulated resource allocation as a Markov 
Decision Process (MDP). A hybrid DRL agent employing asynchronous parallelism improved throughput under 

heavy interference conditions [14] 

A DRL-based task offloading system (Novel DRL-TO) designed to overcome delays, high latency, and security 

issues in IoT. The DRL achieved 70% resource utilization, 93.5% task completion, and 350 kbps throughput [15]. 

An Enhanced LSTM (ELSTM) model, combined with the Red Panda Optimization (RPO) algorithm, was proposed 

to improve energy efficiency in Cognitive Radio Networks. The ELSTM predicts and manages key CRN parameters 

such as transmission time, transmission power, and sensing time, while the RPO algorithm fine-tunes these 
parameters to achieve optimal results. The results showed that the ELSTM-RPO model achieved higher energy 

efficiency, improved spectrum utilization, and better protection for primary users compared with existing methods 

[28]. 

An improved NB-IoT system called NB-CR-IoT was proposed, using Deep Q-Learning to manage the limited 

spectrum more efficiently. By replacing traditional Q-tables with a deep neural network, the algorithm learns to 

reduce repeated transmissions and serve more devices. Results show that it outperforms standard Q-learning in 

resource allocation [29]. 

The authors proposed a resource management system for Social and Cognitive IoT networks using Deep 

Reinforcement Learning (DRL). The goal was to improve energy efficiency and maintain good quality of service for 

IoT devices. They focused on optimizing how radio resources and transmission power are allocated, based on the 
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social relationships between devices. A multi-agent DRL approach with Prioritized Experience Replay (PER) was 
used, allowing devices to learn and cooperate with each other. Simulation results showed that this method performed 

better than traditional techniques, using less energy while still meeting service requirements like low delay and high 

reliability [30]. 

The authors offer a Double Deep Q-Network (DDQN) supplemented with dual-agent architecture for adaptive traffic 
signal regulation. Two agents, each in charge of particular traffic flows, cooperate to stabilize the system and 

preserve a set phase sequence at a four-phase intersection. Grids depicting car positions are used to illustrate traffic 

conditions, and the distinction between waiting and passing vehicles determines rewards. When compared to single-
agent DQN or binary-action techniques, simulations utilizing SUMO demonstrate that this DDQN dual-agent 

approach dramatically increases traffic capacity and decreases congestion [31]. 

The paper proposes a reinforcement learning-based routing method for cognitive radio-enabled IoT communications, 
where routing decisions are dynamically learned based on current network conditions. Specifically, it employs Q-

learning, a popular model-free reinforcement learning technique, to select optimal network paths and communication 

channels by maximizing long-term performance. The algorithm considers factors like channel availability, spectrum 

quality, and interference to make intelligent routing choices. Simulation results from similar studies show that such 
RL-based methods significantly improve average data rate and throughput, while reducing packet collisions and end-

to-end delay, outperforming traditional routing protocols such as AODV‑IoT, ELD‑CRN, and SpEED‑Io [33]. 

3.3. Observations and Insights 

The reviewed DRL approaches consistently demonstrate superior adaptability and throughput performance com 

[28]pared to traditional heuristic or fixed-rule-based methods. However, key challenges remain: 

Sample Efficiency: DRL agents require extensive training episodes to achieve optimal performance. 

Exploration–Exploitation Trade-off: Balancing between discovering new spectrum opportunities and exploiting 

known optimal channels. 

Computational Overhead: High complexity may limit deployment on resource-constrained IoT devices, necessitating 

model compression or lightweight DRL variants. 

Given these strengths and limitations, hybrid models that combine DRL with metaheuristics or cooperative sensing 

are emerging as a promising research direction for practical CR-IoT deployments. 

4. Metaheuristic Optimization Approaches 

Metaheuristic optimization algorithms have been widely applied to throughput optimization in CR-IoT due to their 

ability to efficiently search large and complex solution spaces without requiring complete mathematical models of 

the system. These algorithms are inspired by natural processes such as evolution, swarm intelligence, and predator–
prey dynamics and they can be adapted to solve multi-objective problems involving spectrum allocation, power 

control, and interference management. 

4.1. Motivation for Metaheuristics in CR-IoT 

CR-IoT environments present highly non-linear, NP-hard optimization problems due to fluctuating spectrum 

availability, varying channel conditions, and multi-user interference. Metaheuristic algorithms are attractive in this 

context because they: 

 Do not require accurate channel or traffic models to operate effectively. 

 Manage several competing goals, such as increasing throughput while lowering energy and interference.. 

 Offer global search capability, reducing the risk of convergence to local optima. 

4.2. Recent Metaheuristic-based Solutions 
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The proposed method hybridizes Fractional Grey Wolf Optimization (FGWO) with Cuckoo Search (CS) to exploit 
the strengths of both algorithms—precise local search from FGWO and diverse global exploration from CS. This 

hybrid metaheuristic optimization framework is applied to optimize spectrum sensing thresholds in Cognitive Radio 

Networks (CRNs). Simulation results show that the approach improves accuracy and efficiency compared to 

conventional methods [19]. 

The proposed method integrates Fractional Grey Wolf Optimization (FGWO) with Cuckoo Search (CS) to optimize 

spectrum sensing thresholds in Cognitive Radio Networks (CRNs). By combining FGWO’s precise local search 

capability with CS’s diverse global exploration, the approach achieves better balance between exploration and 
exploitation. The outcomes demonstrate higher detection accuracy, lower false alarm rates, and faster convergence 

compared to traditional methods such as GWO, PSO, and CS, thereby improving the overall efficiency and 

robustness of spectrum sensing under varying SNR conditions [16]. 

The proposed method introduces a Hybrid PSO-based power allocation algorithm for Cognitive Radio Networks. By 

combining the exploration ability of Particle Swarm Optimization (PSO) with additional enhancement strategies, the 

algorithm ensures efficient distribution of power among users. The outcomes show that it achieves higher 

throughput, better fairness, and improved robustness compared to conventional PSO and other existing approaches 

[17]. 

The proposed method presents a hybrid routing approach for IoT networks that combines duty cycling with an 

improved Ant Colony Optimization (ACO) algorithm. Duty cycling reduces energy consumption by controlling node 
activity, while improved ACO ensures efficient multi-hop routing. The outcomes show that the approach achieves 

longer network lifetime, lower energy consumption, and better end-to-end throughput compared to traditional routing 

methods [18]. 

The proposed method introduces a Chaotic Whale Optimization Algorithm (CWOA) for multi-objective conjoint 

spectrum utilization in Cognitive Radio Networks. By integrating chaotic maps with WOA, the algorithm enhances 

exploration and avoids premature convergence. The outcomes show that CWOA achieves better spectrum utilization, 

higher throughput, and lower interference compared to conventional WOA and other optimization methods [20]. 

The proposed method presents a hybrid Whale-Ant Optimization Algorithm (WAOA) for energy-efficient routing in 

Wireless Sensor Networks (WSNs). The hybridization leverages WOA’s exploration strength and Ant Colony 

Optimization’s (ACO) path-finding efficiency. The outcomes demonstrate longer network lifetime, reduced energy 
consumption, and improved packet delivery ratio compared to standalone WOA, ACO, and other conventional 

routing approaches [21]. 

4.3. Observations and Insights 

Metaheuristic algorithms have shown competitive performance in CR-IoT throughput optimization, especially in 
scenarios where the search space is large and system modeling is impractical. However, they typically operate offline 

or require batch re-optimization when network conditions change, limiting their applicability in highly dynamic 

environments. Integrating metaheuristics with online learning methods such as DRL could address this limitation by 

combining global search capability with adaptive decision-making. 

5. Cooperative Spectrum Sensing and Optimization 

Cooperative Spectrum Sensing (CSS) has emerged as a crucial strategy in CR-IoT networks to improve the reliability 
of spectrum hole detection and enhance throughput performance. By enabling multiple IoT devices—acting as 

Secondary Users (SUs)—to collaboratively sense spectrum availability, CSS mitigates the limitations of individual 

sensing (such as shadowing, multipath fading, and noise uncertainty) and increases detection accuracy for Primary 

Users (PUs). 

5.1. Motivation for Cooperative Spectrum Sensing in CR-IoT 
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Single-user spectrum sensing often suffers from low detection probability in challenging wireless environments. CSS 

addresses this by: 

 Aggregates sensing data from multiple geographically distributed nodes to improve detection accuracy. 

 Reduces false alarm probability, thereby increasing overall spectrum utilization. 

 Enhances network robustness under low-SNR conditions, ensuring reliable performance. 

These advantages make CSS particularly suitable for dense IoT deployments where spectrum conditions vary 

significantly across devices. 

5.2. Recent Cooperative Sensing and Optimization Solutions 

The proposed a cooperative spectrum sensing (CSS) optimization system for 6G cognitive radio networks using the 

Manta Ray Foraging Algorithm (MRFO). The algorithm was applied to find the best weights for combining sensing 

results from multiple secondary users, giving more importance to those with stronger signal quality. By optimizing 
sensing thresholds and decision rules, the system reduced false alarms and missed detections, ensuring efficient 

spectrum utilization. The results showed that the method achieved higher detection probability, lower false alarm 

rate, better energy efficiency, and improved throughput and reliability, particularly in low-SNR and dense 6G 

network conditions [22]. 

An energy-efficient cooperative spectrum sensing scheme was proposed for Cognitive IoT that uses spatial 

correlation among nearby nodes to avoid redundant sensing and save energy. By grouping correlated nodes, the 

system reduces unnecessary reporting and improves sensing efficiency. The results showed that the scheme lowers 
energy consumption, increases detection accuracy, and enhances spectrum utilization compared to traditional 

cooperative sensing methods [23]. 

An energy-efficient cooperative spectrum sensing system was proposed for Cognitive Radio networks using a neural 
network. The network is designed to optimize sensing decisions by learning key parameters like each sensor’s 

sleeping rate and detection thresholds, guided by a custom loss function that balances energy usage with required 

detection and false alarm rates. This approach reduces the number of nodes needed for sensing (thus saving energy), 

improves detection accuracy, and achieves better spectrum utilization compared to traditional methods [24]. 

An optimal linear weighted cooperative spectrum sensing system was proposed for cluster-based cognitive radio 

networks. In this method, nodes are grouped into clusters and the cluster heads—those with better channel 

conditions—aggregate sensing data. An optimal linear weighting scheme assigns weights to each secondary user 
based on their SNR and historical sensing accuracy, so that more reliable nodes have a greater influence in the final 

decision. This leads to higher detection probability, lower error rate, and improved spectrum utilization compared to 

traditional methods that treat all nodes equally [25]. 

An energy-efficient cooperative spectrum sensing system is proposed for cognitive radio networks, using a hybrid 

spectrum handoff strategy. The system combines energy detection for spectrum sensing with a threshold-based 

approach driven by primary user traffic patterns to manage spectrum mobility. It employs a hybrid handoff 

mechanism based on dynamic spectrum aggregation, which balances probabilistic stay-and-wait and QoS handoff 
thresholds. This design enables cooperative sensing to identify optimal channels, maximizing throughput while 

minimizing energy consumption, all without increasing handoff delay or detection errors [26]. 

A quantum-secured IoT communication system with AI advancements was proposed for 6G cognitive radio 
networks. It uses dual-layer authentication, combining Public Key Infrastructure (PKI) and Quantum Key 

Distribution (QKD), to secure spectrum access and data transfer. The system forecasts channel state information 

(CSI) using a Multi-Layer Perceptron with Kalman Filter (MLP-KF) and employs an intelligent spectrum sensing 
model based on Reinforcement Learning-based Ensemble Regression (RL-ER). According to simulation studies, this 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-477


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-477 
  

Page | 188  
 

architecture dramatically lowers error rates, boosts prediction accuracy, speeds up encryption and decryption, and 

improves latency and signal coverage [27]. 

The paper introduces a new method to save energy while finding free channels in cognitive radio-based IoT systems. 

It uses a technique called Dempster–Shafer theory to combine results from many sensors to decide if a channel is free 

or busy. The method works with both simple (hard) and detailed (soft) sensing data. This helps reduce energy use and 
makes sensing more accurate. Tests show that the method improves sensing accuracy by about 13%, increases data 

transfer, uses less energy, reduces errors, and helps devices last longer. Overall, it offers a smart and efficient way to 

use radio channels in IoT networks [32]. 

A novel approach to cooperative spectrum sensing in cognitive IoT networks is presented in this research.  Using a 

technique known as distributed sequential detection, two Internet of Things devices collaborate and make judgments 

independently of a central controller.  Based on accuracy and cost, each device determines when to stop sensing and 
determines whether the channel is busy or free.  To determine the ideal moment to pause and make a choice, the 

authors employ a clever strategy known as person-by-person optimization with dynamic programming.  The findings 

demonstrate that this approach is effective and dependable for IoT networks since it lowers the total sensing cost and 

maintains low error rates (false alarms and missed detections). [34]. 

A lightweight Double Deep Q-Network (Double-DQN) was proposed to improve energy efficiency in Industrial IoT 

(IIoT) devices used in thermal power plants. This method uses reinforcement learning to help devices make smarter 

decisions about resource usage while keeping the model lightweight enough for real-time applications. The Double-
DQN approach helps avoid common problems like overestimating action values, making the learning process more 

stable and reliable. Simulation results show that the proposed method significantly reduces energy consumption, 

improves system efficiency, and performs better than traditional Q-learning and standard DQN algorithms. It is 

especially effective in complex and energy-constrained industrial environments [35]. 

The authors proposed an improved Grey Wolf Optimization algorithm called EECHIGWO for selecting cluster heads 

in Wireless Sensor Networks (WSNs). The main goal was to save energy, increase throughput, and make the network 

more stable and last longer. The algorithm selects the best cluster heads by considering factors like the distance to the 
sink, the remaining energy of nodes, balance among cluster heads, and the average distance within a cluster. The 

method was tested using measures such as the number of dead nodes, energy used, operating rounds, and average 

throughput. Results showed that EECHIGWO reduced energy use, avoided early convergence, and extended the 
network lifetime. It also gave much better stability compared to other protocols such as SSMOECHS, FGWSTERP, 

LEACH-PRO, HMGWO, and FIGWO [36]. 

5.3. Observations and Insights 

Cooperative spectrum sensing greatly enhances the reliability of CR-IoT networks, especially in low-SNR and high-
interference conditions. However, CSS introduces additional coordination overhead and reporting delays that may 

reduce real-time responsiveness. Future research is trending toward joint optimization of sensing, channel selection, 

and power control—often combining CSS with DRL or metaheuristic algorithms—to achieve both high detection 

accuracy and throughput performance. 

6. Game-Theoretic Models 

Game-theoretic modeling provides a principled way to analyze strategic interactions among Secondary Users (SUs) 
and between SUs and Primary Users (PUs) in CR-IoT. By formalizing spectrum access as games with well-defined 

utilities and constraints, these methods seek equilibrium that balance throughput, interference, fairness, and energy 

use. 

6.1. Motivation for Game Theory in CR-IoT 

Decentralized decision-making: Many IoT deployments lack a central controller; game models naturally capture 

local, selfish, or partially cooperative behaviors. 
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 Fairness and stability: Equilibrium notions (e.g., Nash, Stackelberg) provide stable operating points that 

discourage unilateral deviation. 

 Heterogeneous objectives: Users may value throughput, delay, and energy differently; utility design 

internalizes these trades-offs. 

6.2. Recent Game theory based solutions 

A game theory-based clustering method was proposed for Cognitive Radio Wireless Sensor Networks (CR-WSNs). 

In this approach, each node decides whether to become a cluster head or join another cluster based on its remaining 
energy, distance to the base station, and communication cost. The clustering process is modeled as a game, where 

nodes reach a stable state and do not need to change roles again. Simulation results showed that this method saves 

more energy, keeps more nodes alive for longer, and extends the overall network lifetime compared to traditional 

clustering methods. It also performs well in dynamic spectrum environments, which are common in CR-WSNs [37]. 

An improved channel allocation game algorithm (CGVAC) was proposed to reduce interference and improve 

spectrum use in wireless sensor networks. The algorithm is designed to work even when the number of available 
channels changes. It takes into account link quality, interference, and remaining energy while assigning channels, and 

it uses game theory to reach a stable solution. Simulation results showed that CGVAC reduces communication 

interference, increases spectrum utilization, and lowers spectrum cost compared to traditional methods [38]. 

A game theory-based model was proposed for IoT-enabled Cognitive Radio Networks (CRNs) working in underlay 
mode. In this approach, the secondary user network was represented using a triangular lattice with relays. The model 

included both interference and power constraints while calculating the Nash equilibrium, and it also considered 

factors such as channel strength and desirability to make the framework more realistic. Simulation results showed 
that this method improves spectrum utilization, provides reliable communication for secondary users, and offers a 

practical framework for applying game theory in CRNs.[39]. 

To reduce the high computational cost of resource allocation in Cognitive Radio Networks (CRNs), the authors 
proposed a Power-Based Pricing Algorithm (PPA). The method is designed for downlink CRNs and ensures that 

interference to primary users stays within safe limits. It works in two stages: first, subcarriers are assigned to users, 

and then a pricing-based utility function is used to optimize power allocation. The algorithm was tested in an OFDM-

based CRN, and results showed that it achieves performance close to the optimal solution while greatly reducing 

complexity to (𝑀log(𝑀)). This makes PPA a more practical and efficient choice for resource allocation in CRNs 

[40]. 

 

7. Other algorithm for Throughput optimization 

 

A Distributed Fuzzy–Deep Reinforcement Learning (DFDRL) protocol was proposed for wireless sensor networks. 

Fuzzy logic is used to select cluster heads based on energy, distance, and node degree, while a Double Deep Q-
Network (DDQN) is applied for routing to choose the best next-hop relay. A cluster maintenance mechanism further 

reduces overhead. The results show that DFDRL improves network lifetime, lowers energy consumption, and 

increases throughput compared to existing protocols. In the future, this system can be enhanced by integrating a 
spectrum awareness algorithm, which would further improve throughput and adaptability in Cognitive Radio IoT 

(CR-IoT) networks [41]. 

The QoS-Aware Deep Reinforcement Learning-based Link Adaptation (QDRLLA) proposed for Beyond 5G 
networks can also be applied to Cognitive Radio IoT (CR-IoT). In CR-IoT, devices must adapt transmission 

parameters while considering spectrum availability and primary user protection. By adding spectrum sensing and 

interference constraints to the reward function, the DQN-based link adaptation can optimize modulation, coding, 
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power, and channel selection. This would improve throughput, spectral efficiency, and QoS in CR-IoT applications 

[42]. 

An AI-based spectrum sensing method was proposed for LoRa and cognitive radio networks. The approach leverages 

artificial intelligence techniques to enhance spectrum detection and minimize interference. Results demonstrate 

higher detection accuracy, improved throughput, and greater adaptability compared to traditional methods, making it 

effective for IoT and CRN applications [43]. 

 

Ref 

& 

Year 

Theme 
Domain 

Focus/Task 
Method Metric Result 

Data/ 

Simulation 
Limitation 

[1] 

2025 

Spectrum 

Sensing 

Review 

CR-IoT 

spectrum 

detection 

(survey) 

Systematic 

Literature 

Review 

Taxonomy, 

challenges, 

compare 

methods 

Consolidates 

detection methods 

& gaps 

Literature 

corpus 

No new 

experiment

s 

[2] 

2022 

Throughput 

Optimizatio

n 

Interference-

limited CR-IoT 

Optimization 

modeling 

Throughput, 

latency 

(modeled) 

Throughput gains 

under interference 

constraints 

Simulation 

(CR-IoT) 

Model-

specific; 

real-world 

validation 

needed 

[3] 

2018 

Resource 

Allocation 

Heterogeneous 

MIMO CRNs 

Priority-based 

dynamic 

allocation 

(EPBDRA) 

Throughput, 

fairness 

Improved 

allocation 

efficiency vs 

baselines 

Simulation 

Older; 

scalability 

not 

explored 

[4] 

2022 

Dynamic 

Spectrum 

Access 

(DSA) 

Distributed 

multi-agent 

CRN 

Cooperative 

Multi-Agent 

RL 

SE, fairness, 

convergence 

Outperforms 

traditional DSA 
Simulation 

Real-world 

non-

stationarity 

untested 

[5] 

2024 

Spectrum 

Sharing for 

IoT 

5G IoT 

connectivity 

Sharing 

strategies 

(conceptual/an

alytical) 

Connectivity, 

spectral usage 

Improved IoT 

connectivity via 

sharing 

Analysis/Si

mulation 

Deploymen

t aspects 

limited 

[6] 

2024 

Security/Qu

antum 

6G CRN IoT 

security 

AI + 

Quantum-

secured 

framework 

Security 

resilience, 

latency 

(conceptual) 

Proposes 

quantum-secured 

CR-IoT design 

Concept/pro

totype 

Implement

ation 

complexity 

[7] 

2025 

Spectrum 

Decision AI 

Multi-user 

access, 

decentralized 

CRN 

AI-based 

decision model 

Access success, 

collision rate 

Enhanced access 

efficiency 
Simulation 

Generalizat

ion to 

varying 

loads 

[8] 

2021 

Throughput 

vs Sensing 

EE 

CR-IoT sensing 

scheme 

Energy-

efficient 

sensing 

Throughput, 

detection 

probability, EE 

Analyzes EE–

throughput 

tradeoffs 

Analytical/S

imulation 

Assumes 

idealized 

channels 
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analysis 

[9] 

2022 

Throughput 

Improvemen

t 

CRN for 

5G/B5G IoT 

Cluster-ID-

based scheme 

Throughput, 

delay 

Throughput 

improvements 

reported 

Simulation 

Cluster 

maintenanc

e overhead 

[10] 

2024 

DRL for 

DSA 

Multiuser 

multichannel 

CR-IoT 

Distributed 

DRL 

SE, throughput, 

fairness 

Surpasses 

heuristic DSA 
Simulation 

Scalability/

communica

tion cost 

[11] 

2024 

FL + DRL 

Optimizatio

n 

MEC with data 

heterogeneity 

Hierarchical 

Federated 

Learning + 

DRL 

Convergence, 

accuracy, 

latency 

Improved FL 

under 

heterogeneity 

Simulation 

Not CR-

specific; 

adaptation 

needed 

[12] 

2023 

DSA for IoT 

with H-Fed 

DRL 

IoT dynamic 

spectrum access 

Hierarchical 

federated DRL 

Throughput, 

SE, 

convergence 

Better DSA with 

privacy benefits 
Simulation 

Communic

ation 

overhead in 

FL 

[13] 

2025 

DRL for 

TVWS DSA 

TV whitespace 

CRNs 

Deep RL 

agents 

Success rate, 

collisions 

Improved channel 

access decisions 
Simulation 

TVWS 

database 

dynamics 

not covered 

[14] 

2025 

DRL 

Resource 

Allocation 

Healthcare IoT 

(wearables) 

DRL-based 

spectrum 

allocation 

Latency, 

throughput, 

reliability 

QoS 

improvements for 

e-health 

Simulation 

Medical-

grade 

validation 

pending 

[15] 

2025 

Task 

Offloading 

IoT resource 

utilization 

Actor-Critic 

RL 

Latency, 

energy, success 

rate 

Enhanced 

offloading 

efficiency 

Simulation 

Edge 

dynamics 

simplified 

[16] 

2025 

Metaheuristi

c Power 

Opt. 

WSN 

transmission 

power 

Enhanced 

Grey Wolf 

Optimization 

Energy use, 

PDR 

Lower power with 

maintained PDR 
Simulation 

Large-scale 

convergenc

e unknown 

[17] 

2022 

Power 

Allocation 
CRN robustness 

Hybrid PSO-

based 

allocation 

Interference, 

throughput 

Robust power 

allocation vs PSO 
Simulation 

Parameter 

tuning 

sensitivity 

[18] 

2025 

Energy-

Efficient 

Routing 

IoT routing 

Duty cycling + 

improved 

ACO 

Network 

lifetime, delay 

Energy savings vs 

baselines 
Simulation 

Real 

mobility 

not tested 

[19] 

2023 

Spectrum 

Sensing 

CRN sensing 

optimization 

Fractional 

GWO + CS 

Detection 

accuracy, FAR 

Improved sensing 

performance 
Simulation 

Complexity 

of hybrid 

method 

[20] 

2023 

Multiobjecti

ve Spectrum 

Util. 

CR spectrum 

utilization 

Chaotic Whale 

Optimization 
SE, utilization 

Better 

multiobjective 

trade-offs 

Simulation 

Chaos 

control 

parameters 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-477


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 10 (Oct -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-477 
  

Page | 192  
 

[21] 

2024 

Energy-

Efficient 

Routing 

WSN routing 

Hybrid 

Whale–Ant 

Optimization 

(WAOA) 

Energy, 

lifetime, PDR 

Outperforms 

ACO/WOA 

variants 

Simulation 

Applicabili

ty to CRN 

indirect 

[22] 

2021 

Cooperative 

Sensing 

CR in 6G 

networks 

Optimization 

of CSS 
Pd, Pf, EE 

Optimized CSS 

settings 
Simulation 

6G 

assumption

s abstract 

[23] 

2020 

Cooperative 

Sensing 

CR-IoT with 

spatial 

correlation 

EE CSS using 

spatial 

correlation 

Energy, sensing 

time 

Energy saving 

with correlation 

use 

Simulation 

Correlation 

estimation 

overhead 

[24] 

2022 

CSS with 

ML 

Energy-efficient 

CSS 

Machine 

Learning-

based CSS 

Accuracy, 

energy 

EE gains vs 

classical CSS 
Simulation 

Model 

training 

cost 

[25] 

2021 

CSS 

Weighting 
Clustered CRN 

Optimal linear 

weighted CSS 
Pd, Pf 

Improved 

detection via 

weights 

Simulation 

Cluster 

formation 

cost 

[26] 

2022 

EE via CSS 

& Handoff 

CRN energy 

efficiency 

Hybrid 

spectrum 

handoff + CSS 

Energy, delay 
EE improvement 

reported 
Simulation 

Handoff 

signaling 

overhead 

[27] 

2024 

Security/Qu

antum 

6G CRN 

security 

AI-enhanced 

quantum-

secured 

framework 

Security 

robustness 

(conceptual) 

Framework for 

secure CR-IoT 
Conceptual 

Hardware/k

eys 

practicalitie

s 

[28] 

2024 

Energy 

Efficiency 

Optimizatio

n 

CRN EE 
Enhanced deep 

learning model 

Energy index, 

throughput 

EE gains vs 

baselines 
Simulation 

Generalizat

ion to 

varied 

traffic 

[29] 

2020 

Resource 

Allocation 
NB-CR-IoT 

DRL-based 

allocation 
Throughput, EE 

Improved 

allocation 

decisions 

Simulation 
Narrowban

d focus 

[30] 

2020 

Energy-

Efficient 

Resource 

Mgmt 

Social & 

Cognitive IoT 

DRL-based 

management 
Energy, utility 

EE improvements 

via DRL 
Simulation 

Communic

ation 

overhead 

[31] 

2020 

Control 

(Reference) 

Traffic signal 

control (method 

ref) 

Double DQN 

dual-agent 

Delay, 

convergence 

DDQN shows 

gains 

(methodology) 

Simulation 

Non-CR 

domain 

reference 

[32] 

2021 

Throughput 

vs Sensing 

EE 

CR-IoT EE 

sensing 

Analytical 

throughput 

analysis 

Throughput, Pd, 

Pf 

Tradeoff 

characterization 

Analytical/S

imulation 

Specific 

sensing 

assumption

s 

[33] Routing via CR-IoT Reinforcement Delay, PDR, RL routing Conference Short 
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2024 RL communication

s 

learning 

routing 

energy benefits shown simulation paper; 

limited 

scale 

[34] 

2024 

Cooperative 

Sensing 

Distributed 

sequential 

detection 

Distributed 

sequential CSS 

Detection delay, 

Pd 

Faster detection at 

target Pd 

Simulation/a

nalysis 

Synchroniz

ation 

assumption

s 

[35] 

2025 

EE 

Optimizatio

n (DDQN) 

Industrial IoT 

devices 

Lightweight 

DDQN 

Energy, task 

success 

Energy reduction 

with DDQN 
Simulation 

Industrial 

workload 

diversity 

[36] 

2023 

Cluster 

Head 

Selection 

WSN energy 

efficiency 

Improved 

Grey Wolf 

Optimization 

Lifetime, 

energy 

EE gains via I-

GWO 
Simulation 

Not CR-

specific 

[37] 

2022 

Game-

Theoretic 

Clustering 

CR-WSN node 

clustering 

Game theory-

based 

clustering 

Energy, 

stability 

Improved cluster 

stability 
Simulation 

Payoff 

design 

dependence 

[38] 

2023 

Game-

Theoretic 

Spectrum 

Opt. 

Variable 

channel 

numbers 

Improved 

game 

algorithm 

SE, utility 
Better spectrum 

resource use 
Simulation 

Assumes 

rational 

players 

[39] 

2020 

Game 

Theory for 

Underlay 

CR-IoT 

Cooperative 

underlay access 

Game-

theoretic 

approach 

Interference, 

throughput 

Feasible 

cooperative 

underlay 

Conference/

Simulation 

Limited 

scale 

evaluation 

[40] 

2022 

Power 

Allocation 
Downlink CRN 

Efficient 

power 

allocation 

algorithm 

Throughput, 

interference 

Improved power 

efficiency 
Simulation 

Channel 

model 

assumption

s 

[41] 

2025 

Routing 

with DRL + 

Fuzzy 

WSN routing 

Fuzzy logic + 

DRL, 

distributed 

Energy, PDR, 

delay 

Improved routing 

performance 
Simulation 

Overhead 

of fuzzy 

rules 

[42] 

2025 

Link 

Adaptation 

(DRL) 

Beyond-5G link 

adaptation 
Deep RL 

Throughput, 

QoS 

Higher QoS & 

throughput 
Simulation 

CR-IoT 

applicabilit

y needs 

mapping 

[43] 

2023 

AI for 

Spectrum 

Sensing 

LoRa & CRN 

sensing 

AI-based 

sensing 

methodology 

Detection 

accuracy, 

interference 

Higher detection, 

reduced 

interference 

Experiment/

Simulation 

(per paper) 

Domain-

specific 

tuning 

[44] 

2022 

Pareto 

Resource 

Allocation 

CR-IoT EE vs 

SE trade-off 

Hybrid Tabu + 

Simulated 

Annealing + 

Fuzzy 

EE, SE, fairness 

Pareto-optimal 

improvements vs 

TS/SA 

Simulation 

Heuristic 

parameter 

sensitivity 
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A Pareto-optimal resource allocation scheme was proposed for Cognitive Radio-based IoT networks to balance 
energy efficiency (EE) and spectrum efficiency (SE). The authors introduced a Hybrid Tabu Search–based Simulated 

Algorithm (HTSA), which combines Tabu Search (TS) and Simulated Annealing (SA) with fuzzy decision-making 

to select the best trade-off solutions. Simulation results showed that HTSA outperforms traditional TS and SA, 

providing higher energy and spectrum efficiency, fairer resource utilization, and better adaptability under different 

network conditions [44]. 

8. Conclusion and Future Directions 

This survey reviewed 44 recent works on Cognitive Radio (CR) and Cognitive Radio-based IoT (CR-IoT) networks, 
focusing on spectrum sensing, resource allocation, energy efficiency, and throughput optimization. While traditional 

methods offer stable results, they face challenges with scalability and adaptability. Recent advances such as deep 

reinforcement learning, metaheuristics, and hybrid cooperative approaches show better performance, but issues like 

high computational cost, lack of real-world testing, and no common datasets remain. 

Future research should focus on designing lightweight AI models that can run on low-power IoT devices, developing 

benchmark datasets for fair comparison, and testing solutions in real-world environments. The use of 6G features like 

ultra-reliable low-latency communication and terahertz bands will further improve CR-IoT. In addition, more work is 
needed on security and privacy through blockchain, federated learning, and quantum-safe methods, as well as on 

energy-efficient protocols for sustainable networks. Collaborative and intelligent spectrum sharing using multi-agent 

learning will also play a key role in building scalable, secure, and practical CR-IoT systems. 
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